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I. INTRODUCTION

This study is the first step in determining northing values in the 4
Universal Transverse Mercator (UTM) Military Grid System. The UTM coordinate
system is obtained by projecting- the earth's surface on:o an oblate cylinder

slightly smaller than the earth's radii. The northing value is a measure of
the distance from the equator to any point of latitude on the earth's surface.
The first step in determining the northing value requires a very accurate
calculation of the distance along an ellipse, which is analogous to calcu-

lating the UTM northing value along the UTM zone central meridian.

The purpose of this study was to determine an accurate closed loop solu-
tion for calculating northing values along the central meridian. This report
derives and evaluates three different techniques for determining this distance.

They are: (1) the Gaussian integration of a second order elliptical equation
using parametric latitude, (2) the closed form approximation of the expanded
and integrated elliptical equation, and (3) the summation of average radii of
curvature as a function of the geodetic latitude angle.

A. Derivation of the Equation for an Ellipse

To begin this study, the equation of an ellipse was derived. In the
following drawing, two concentric circles of radii a, b with centers at the
origin were drawn. Next, a ray was drawn from the origin cutting both circles
at the points Q and R and forming the angle y. P is then the intersection of
the line parallel to the Y-axis through Q and the line parallel to the X-axis
through R. For each angle y there is determined point P, whose coordinates
(X, Y) are dependent upon y

(o,b) ,

aa

Y~~~ = b si 1

, )
Y]

Since 0= a and OR =b, X and Y are expressed as functions of y by,

X - a cosy
Y = b sin y (1)



From the equations above, it can be seen that

X cos y and-!= siny

ra b (2)

Then by squaring and adding these equations together and using the trigono-
metric identity cos2y + sin2y - 1, the general formula for an ellipse was
derived. Hence,

X2  y2  = 1

a2 +b 2  (3)

The complete ellipse is traced out as y (the parametric latitude) goes
*from 0 to 2iT. Also from equation (2) and the same trigonometric identity it

was found that

IY =b Ta . (4)

Next, by looking from a geocentric perspective the tan 93 also equalled

SX

(5)

Therefore a relationship between the parametric and geocentric angles was
established by combining equations (4) and (5).

Tan q = b Tan y .(6)
a

B. The Relationship of Beta and Gamma to Alpha

* Since primary emphasis generated around geodetic data, a relationship
between geodetic, geocentric, and parametric values was needed. The drawing
below (the relationship of 0 and y to a) shows an ellipse and the geodetic,
geocentric and parametric angles.
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The geodetic angle, a, is formed when taking a perpendicular to a tangent
at any point on the ellipse. In Equation (3), the general formula for an
ellipse was differentiated in order to find a relationship between alpha and
the beta and gamma angles. This procedure is shown below:

X2  y2- + -= I .(7

a2  b2

Rearranging Equation (3) into differentiable form gives,

X2 b2  y2 a2

- + - =I

a2 b2  a2b2

and (8)

Y2 6 2 + y2 a2 = a2 b2 (constant).

Differentiation gives,

2x dx b2 + 2y dy a2 = 0

and (9)

2y dy a2 - -2x dx b2

In order to determine the tangent of alpha, the diagram below was drawn.

a 

x

By taking the tangent line as it follows the arrow, it was seen that dy was
positive and dx was negative, thus giving a negative slope. The tangent of

alpha was found by rotating a 900 and seeing that Tana . So, by solving
-dxy

Equation (9) for Z-- it was determined that
dy

Tanrx- = -- ( -a2-(y (10)dy b2/\X/

3



With the relationships in Equations (6), (9), and (10), conversion
equations for a were developed. Substituting the equation Tan' = y/x into
Equation (10) gives

n= Tan Tang, (I1)

and by substituting Tanp = b/a Tany into Equation (10) gives

y =Tan- 1 ( Tan) (12)

Equations (11) and (12) were used in converting geodetic alpha t it-

geocentric and parametric values.

I T. GAUSSIAN INTEGRATION OF A SECOND ORDER ELIIPTiCA. H I, "

Finally, the arc-length formula was derived tr.f tnnhe jr v--.' L . C I
of the ellipse. The procedure is shown as follows:

X = a cosy
Y = b siny , where a > b.

ds2 = dx2 + dy2

= (a2sin2y + b2cos2y)dy2

= [a2(i - cos2y) + b2cos2yIdy2

ds = a - a2-b2 cos2y 1/2 dy

fds = af [I a 2 -b2 cos2y] 1/2 dy aa-b

This is an elliptical integral of the second kind where e2 = a where e is
the eccentricity of the ellipse. Therefore, a2

fds = af(1-e2cos2y)1/2 dy (14)

The first of the three methods, the Gaussian numerical integration, using
parametric angles, involved using the integral from Equation (14). This
integral was evaluated from lower to upper gamma in steps of .5' and totaled
for a cumulative sum of arc-distance.

1l. CLOSED FORM APPROXIMATION OF EXPANDED AND INTEGRATED ELLIPTICAL
EQUATION - METHOD 2

Since Equation (14) cannot be solved in closed form, the binomial
theorem was used to expand the integrand into an integrable closed form solu-
tion. By using the definition of the binomial theorem

n= 1+ny + n(n-1)X2 + etc. 2 <

• .2! (; 2< , (15)

4



and setting

X = e2cos 2 y
n = 1/2, (16)

the final solution became

e2cos 2 y e4 cos 4y + (17)
2 8

Therefore,

fds = afI - e2cos2y e4cs4y dy +. . . (18)

and
I( e2 3 4  ee2 e)e

s = a [1 _ 64y -(2 + e sin2y e 2 sin4y + . . . (19)

The second method used to calculate arc distance was obtained from

Equation (19) which was evaluated between two proper limits. Since for the
case under study, one of these limits is y = 0, Equation (19) can be evalu-
ated directly as a function of y (parametric latitude).

IV. SUMIATION OF AVERAGE RADIUS OF CURVATURE - METHOD 3

The third and last method, independently derived using geodetic lati-
trudes, involved taking the radii of curvature of the lower and upper limits (see
driwing below), adding them, taking their average and multiplying them by Aa,

where Ax is the change in geodetic latitude.

In equation form it is,

S (RC 4- RCU) Au (20)

where

RC = a(-e 2 ) (21)
( -e2sin2 a)



The derivation of Equation (21) is shown in the Appendix.

In order for these three methods to be calculated smoothly and effi-

ciently, a Fortran program called ELIPSE was developed. This program, as

listed below, carries out all the aforenamed integration and generates a table
of all the geodetic, geocentric, and parametric angles along with the three

calculated arc distances from 0° to 900 in steps of .50 (see Table 1).

This study was the first step in determining northing values along the
Central Meridian. Three methods analogous to those in UTM were used to deter-
mine these values. The first method was a numerical integration evaluation of

a closed form integral. The second method was a series approximation of the
integral. The third method used average values of the curvature technique.

The results from comparisons between the three methods show differences
of less than a meter. The conclusion is that any of the three methods could
be used for the determination of UTM northing values from geographical data

without accuracy penalty.

FORTRAN PROGRAM

C PROGRAM EIPSF

C
C CALCULATES THE ADCLEMGTH PFTWEEPJ 7,! LT'ITS FYPRESSED IH ANGLES P Y HC
C OF THE GAUSSIAN INU-'ERICAL TMTEGRAT!O ! PO1ITI!,APP?.nYI;!ATE CLOSED FOy,

C SOLUTIO'!,AmD THE AVERAGE StI! OF THE EQUATOR!AL RAP! I
C

I11PLICTT REAL*8 (A-H,O-7)
EXTERNAL EQUATI
CO T.ON/AA/RADC, E2
CHARACTER*1 ANS

C
C DATA FOR CALCULATIONS
C

DATA A/6378206.4DO/
DATA B/6356583.8DO/
DATA E2/. 0067686580D0/
DATA RAnC/57.2957795131D0/
DATA P12/i. 57079632679490D0/
ADIF=O. 5/RADC
EP?=( A**2-B**2)/B**2
E4=E2*-*2
FACI=(B/A) **2
FAC2=B/A
REWIND 3
WRITE(2,100)

100 FORMAT(' ',T7,'GEO)ETIC',T21, 'GEOCENTRIC' , T38,'PARAMETRIC'
ITG1, 'NIJMERICAL' ,T75, 'APPROXI"ATION' ,T03, 'AVERAGE RADTI' ,T]1O,
I'NITER' ,/,/,/)
GO TO 16



10 COIT I NIJE

CDATA CAN BE RFA3 IN USING FORO03.IDAT nn .
C BY TERIMINAL INPUT
C
C WRITE(6,*) 'DO YOU WISH TO COTI~tE?(Y/N)-
C READ(3,1O1) ANS
C 101 FM2MAT(A)
C IF (AMS.EQ.Y') THEN
C WRITE(6,*) 'DO YOU WISH TO COMTINUE>'(1/2)'

READ3, *) TAMS 4
IN(IAMS. EQ. 1) THEM
GO TO 16
ELSE
GO TO 09

EinF IF
16 CONTINUE

C ',,RITE( 6,*) INPUT LOW.,ER LIMIT VALUES FnD GEOO ErTICl AL-PHA IM
c WiRT(6,*)DEREES,MlILUTES,AND1 SE~M!DS.-

REAn( 3,*', END=550)AIlL, AlWL,AISL-
C 1.RITE(6,*) 'Po1~yTS?'

RPOD( -3, *)'1
rC '-ITTE (6, *) 'SUPI kl-ERVALS?'

RFAD( 3, *) tNP'T
C WRTE(r6,*) 'ACCURACY FACTAP?'

C WR.ITE (G,k")',"AX INTEGRATIOU)'S?'

C CHANGING DEGREFS,1'11WITES, SECONIDS T0 DEC U'IAL DEGHEES
C ANO CHAMIGUJG DEGREES To PSAD-JtS.

CALL DEGREE(DEGRE",AIDL,AM' l-AISL)
CALL RADTAN(RAD,OEGRE)
AL OW=RAO

C INCREMEFNTUJG UiPPER LIiITT IN STEPS ")7. 5 DEGREES

AUP ALOW+AOIF

CCORREFSPONIDIN'G GEOCENTRTC ANlfl PARA,"ETRIC LIMI!TS
C N( )=GEOr-ElNTRIC G( )=PARA'.1ETRIC
C

P!-l',hDATANl( FAC1*OTA'J( ALflWI))
GLOD,4DATA'!( F.C?*DTA'l( ALo'.))

TEST CASE MOR 00 !3EGPFFS
C

IF(LC..L5rTY

ELSE
MIP)=nATAN( rAC, 1 *DTAI .:fl))
rGUP=DATrM"(W2AC?<JA"(A)

r pp IF



C GAUSSWA! IIITEC1RATITON STEP ON~E.

CALL GAlJSA(G ,GnIF,EQUAT1 rGLfll,G'JP,fl ,N1T,0lEL,f-AX lT TER)
C TSUM=G*A

SUM 1=SUM1+TSUM
C
C APPROXIMATE CLOSEDl FORM SOLUTIONh STEP T140.
C

EQUAT2=( l.nO- .?5DO*E2-3.n)o/F) .DO*E4 )*GItjp-( .r)O/P.fl0,F?+1 . fl/3?. no
,*E4)*fDlIl.(2*GUP)(1.)O/2C(,.O*E4*DSTt d(4*CUIJ))
SIJM12=EQUAT2*A

C
C AVERAGE SUM ETIJATOrHAL RAOII ,STEP TlH'EE.

RL=(Ak(1.00-E2))!

*(rnSQRT(l.rmO-(E2*(rDSr.'(A~fP)k?))*(.nO-(E2-<nSvJI(AUP))**?)))
DELTMA=AUP-ALOW
EQUAT3=( (RL+RtJ)/? .0O)*DELTAA
SUm3=SUM,3+EQlJAT3

*C RADIANS BACK To nEGREES,HINUTES,SECOM0S

C ALTVADADAP
CALL TNVRAD(AID,AUP)

CALL INVRAD(GID,GUP)
CALL TNVDEG( IAD,IAM,AS,ATD)
CALL INVDEG(IRD),IBM,BS.,BID)
CALL TNvfEG(IGD,IGM,GS,GID)

C
C OUTPUT
C
C

WRITE(2,200) IAl, IAM,AS, IBD, IBM,BS, IGD , TM,GS, SMl, SUM2, SJ3, NITER
200 FORMAT(' ',T2,13,'T7,T2,TlO,F7.4,T19,I3,T24,I2,T27,F7.4,T36,13,T41,

112,T44,F7.4,T53,Fl7.O,T71,F17.O,T89,F17.O,T107,15,/,/)
GO TO 10

550 CONTINUE
909 CONTINUE

* STOP
END

C
C
C SUBROUTINES AND FUNCTIONS
C

aC DEGREE,RADIAN,EQ'JAT1,1TNVDEG,TNIVRAD
C

SUBROUTINE DEGREE(r)EGRE,DEG,RMIN,SEC)
IMPLICIT REAL*8 (A-H,O-Z)
DEGRE=DABS(DEG)+RMINt/60.DO+SECI 3600. DO
DEGRE=DS IGN(DEGRE ,DEG)

4 RETUR N
O END

C



SUBROUTIME RADIAN(RID,OEG E)
COMMON/AA/RAOC ,E2
RAD=DEGRE/RADC
RETURN
E ND

C
C

FUNCTION EQUAT1(GAM'!A) ~
IMPLICIT REAL*8 (A-11,0-7)
E2=. 006760,661)0
EQUAT1=DSQRT(l.DO-(E2*DrOS(GAM,"A) k*2))
RETURN
E ND

C
C

SURROUTI'!E INVRAD(DEGRE,RAD)
IMlPLICIT REAL*8 (A-4,0-7)
COMMOMI/AA/RADC , E2
I)EGRE=RArl*RADC
RETURN
END

C

SUBROUTINE INVDEG( INT,MIN, SEC ,PEGRE)
IMPLICIT REAL*8 (A-H,0-7)
IHT=IIDINT(DEGRE)
REAL=)FLOAT( INT)
FRAC=DEGRE-REAL
RSLT=FRAC*60. DO
M=IIDINT(RSLT)
REAL=DFLOAT(M)
MIN=REAL
FRAC=RSLT-REAL
SEC=FRAC*60. DO
RETURN
E HD
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APPENDIX

From a standard calculus book* the radius of curvature is defined by the
formula below.

[(f,) 2 + (g,)2]3/2
RC = [f,g.. - g,f..] (A-i)

Using the equations from the ellipse the f and g functions are defined.

X - f(y) = a cos y
Y = g(y) = b sin y (A-2)

where y is the parametric latitude defined earlier.

Then by differentiating these equations they can be used in the formula
for the radius of curvature.

V = -a sin y f" = -a cos y

g' = b cos y g" = -b sin y (A-3)

(a2 sin
2 y + b2cos2y)3/2

RC (ab sin 2 y + ab cos 2 y)

-~ 1 a2 (l-cos2 y) + b2cos 2 y]3/2ab

[ [a2 - (a2_b 2 )cos2 y]3/ 2
ab

RC Fa2(l - - cos2y 3/2
ab a2]

L a2-b
As seen earlier in this report e2  2 b2  By transforming this equation

a
2

the relationships below are obtained.
b2  e1-'Z  l e2  a 1

=ab l-e2) /2 (A-4)

a
Therefore e2 and - can be substituted into the RC equation.b

.a
3

RC -.- (1-e2cos2y)
3 /2

ab

-- (b) a(l-e2cos2y)
3 /2

*Calculus with Analytical Geometry by Earl W. Swokowski

11
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aC l-e 2 cos 2 y) 3/2

RC 1 (-e 2 ) 1/2 (A-5)

Since the radius of curvatur6 equation is needed in terms of a (the geode-
tic latitude) the relationship between y and a is needed.

Tany = b Tan a
a

If a triangle like the one shown below is drawn, then the cos 2y can be
obtained.

b Tan a

a

a2

cos~y =a
2+b2Tan2ax

(A-6)

I + b2Tan2a

a2

* Since -=(l-e
2) then

a2

cos2 ' 1+1-e2)Tan2ax (A- 7)

By expandng Equation (A-7) and substituting it into Eqliation (A-5) then
Equation (21) can be derived.

* cos2y= 1
1+Tan2 a-e2Tan2 a

RC =a (1e2 ( I 2  )/ 2

(I-e 2 ) 1/2

- a 1 -sec
2a-:2Tan2 )3/

( -e 2 ) 1/2

12



=a ( 1 e:sin2a) /

(1-e 2 ) 1/2

(i-e2sin2ax-e cos2x 3/2

I-e 2 sin2ax TI-e2)/2

RC: a(l-e2)

(1-e2sin2a)3/2

13
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